我在Google無人車研究組的日子
本文作者田淵棟,2005 年及 2008 年獲上海交通大學電子資訊及電氣工程電腦系學士學位及碩士學位,2013 年獲機器人系博士學位,主要研究電腦視覺,機器學習及最優化方法,在頂級會議上發表過多篇會議及雜誌論文,曾獲 2011 年微軟博士研究獎學金,獲 2013 年國際電腦視覺會議(ICCV)最佳論文提名獎。現於 Google X 實驗室 (Google X Lab) 無人駕駛汽車 (Google driverless car) 研究組,擔任研究員 / 軟體工程師職位。本文寫於 2014 年 1 月。
到 Google 無人車組全職工作已經有四個月了。寫一下感想。
鑒於項目的高度機密性,很多話不能說,我唯一能透露的,就是兩條:同事們都很厲害,然後都非常努力。主管不怎麼主動管,但大家都明白如果事情做不完就得加班,因為一個一個小發佈(release)的最後期限(deadline)擺在那裡。節奏很快,不像是在大公司裡工作,反倒更像是在一個初創團隊裡忙碌。
這四個月感覺下來,Google[x] 實驗室有幾個很有趣的特點。其一是軟硬件結合極其緊密,這一點從已有的報導裡可以看出,不論是無人車 (Self-driving car),眼鏡 (Google Glass) 還是最近公佈的氣球無線網路 (Loon) 及能測血糖的隱形眼鏡 (Iris),都是軟硬結合的產品。這直接導致的結果,就是我們每天面對的問題和之前在學術圈時思考的完全不同。
在學術圈,問題的已知條件和資料集都是給定的,我們要做的就是像解數學題一樣,鑽進去找到更好的解法,並在已知的資料集上和前人對比證明其有效性。但在 Google[x] 則完全不同,大的項目(比如說開發無人車)擺在這裡,但已知條件,解決方案,使用何種硬件,如何分配資源,都是不確定的;唯一確定的,是要以最快的方式和最小的成本把它實現出來,讓一輛車能安全地自行其道,同時生產成本又最少。
在這樣的特定背景下,碰到一個難題,首先想的不是如何把它不計成本地解出來,而是問自己有沒有必要解它,能不能繞開它而實現目標?事實證明,在這樣高自由度的空間裡尋找一個特定的解決方案,幾乎總是能繞過學術界的難題,找到簡單易行的實用方法。
這就像要發明能在道路上移動的機器人,不是絞盡腦汁去研究人類兩足的機理,而是用容易控制又廉價的輪子代替;要設計飛機,不去模仿鳥類形態優美卻機理複雜的撲翼,而是使用固定機翼加噴氣動力。
其二是幾乎沒有專職的研究職位。所有人既是研究員 (Researcher),又是軟件工程師 (Software Engineer)。基本上每個人負責一個具體的方向,對這個方向自主地分析現存的問題,並不斷通過和同事討論提出新方案,最後評估方案的效果。就算是組裡的主管(Manager),甚至是主管的老闆,也要寫代碼查錯誤完成具體工作,唯一的不同點,是他們對系統有更整體的理解,遇到問題能幫忙找到下屬找不到的角度。碰到許多工同時需要完成的時候,能分清主次,丟卒保車,確保整個組的大方向正確。
對於從來沒有碰到過的新問題,思考新思路和寫代碼開發是同時進行的,C++ 代碼寫完就直接上產品去測試看效果如何,不行就分析研究再換一種,如此快速反覆運算直到找到好方案為止,如果一兩星期裡找不到好方案,那就認為這個問題是困難的,於是就要退一步思考,想辦法繞開它。
因為這個原因,諸如「寫代碼和做研究的時間比例是多少」之類的問題就沒有什麼意義,因為完全看需要解決的是什麼問題,寫很多格式漂亮架構清晰的代碼卻不能解決問題沒有意義,天馬行空地思考不在實際資料上跑也沒有意義,最重要的只是「解決問題」這四個字。
這種思路決定了研究風格是「具體問題具體分析」式的,有額外條件和額外資訊就儘量用上,不會花時間思考一般情況;是「崇尚簡單方案快速出結果」式的,而不會使用精巧複雜卻不太直觀的數學理論,也不會花幾個月賭一個萬能演算法。這種研究方式的缺點顯而易見,就是沒有辦法產生深遠及本質的成果,但是既然目標是利用人類現有的技術,去完成一個舉世矚目的新系統和新產品,我想不出來有其它更好的推動方式了。
其三是組內資訊交流的極端重要性。學術界強調鑽研問題,獨立工作和原創性成果;業界強調合作,共同解決問題。一個人,特別是剛進來的新人,對整個系統的組成沒有深刻理解,也不去詢問同事,主管給一個問題就按自己的想法單幹,結果發現三分之一工作和無人車目前急需解決的難點無關,三分之一工作已有人做出過類似工具,還有三分之一工作聽起來很有道理,自成一說,但是在實際資料上一跑效果很差。這些情況是完全可能的。按學術界的思路,這些工作都可以成為不同風格的學術文章,但在我們這裡,全都是沒有用的。
而充分交流討論就能避免這類情況。有越多來自別人的資訊,就越能明確目標直入主題;越知道系統的優劣和目前的可用工具,就越能借風使力,提高效率。有時候跨組間不經意的一兩句對話,少則抵得上幾小時或者幾天的辛勤勞作,多則改變整個組的行進方向。無人車組裡中國人非常非常少,因此英語的地位相應提高,實在是需要在業餘時間多加訓練才好。
對於這樣一個開創性項目,雖然已經取得了重要的進展,但還是有很多棘手的具體問題需要解決,每一個細節都決定成敗。並且,越接近最終目標就越為艱難,有時候為了有百分之一的效果提升,是不惜從頭再來,將原來的工作全部推翻的。所以說這個項目最後是否成功,還要看全體同事的聰明才智和勤奮努力,及一點點捉摸不定的運氣。
希望運氣在我們這邊。
田淵棟 2014 年 1 月 23 日
[原文:36Kr]
支持EJ Tech
如欲投稿、報料,發布新聞稿或採訪通知,按這裏聯絡我們。
Related Posts
Latest News
-
禁用AI|高盛禁虛擬面試期間用AI
高盛使用的視像面試平台HireVue,透過人工智能(AI)評估人才,以各種行為問題揭示求職者技能。高盛校園招募團隊據報最近發送一封電郵,提醒歐洲、中東及非洲地區的私人投資學院學生,要注意高盛HireVue面試的要求,包括閱讀該銀行的財務業績,並熟知其商業原則及核心價值,但禁止在面試過程中使用任何外部資源,包括ChatGPT或谷歌搜尋引擎。
- Posted June 16, 2025
- 0
-
中國自主研發AI晶片之路(方保僑)
中國科技企業在人工智能(AI)晶片領域的自主研發,近年來成為國內外關注的焦點。
- Posted June 16, 2025
- 0
-
懶人福音|星形藥丸持續一周釋放效力
對不少慢性病患者而言,往往忘記每天定時服藥,最終導致症狀惡化、病情復發及須住院治療。美國麻省理工學院衍生公司Lyndra Therapeutics開發一種藥丸,只須每星期服用一次,就能在胃內逐漸釋放藥力。
- Posted June 16, 2025
- 0
-
古籍訓練AI|哈佛逾3.8億頁文獻供AI訓練
美國廣播公司新聞(ABC News)報道,除了波士頓公共圖書館計劃外,即將開放收藏的大量舊報及政府文件,美國哈佛大學近日向AI研究人員開放館內藏書,包括近百萬本早在十五世紀出版的書籍,涵蓋254種語言。
- Posted June 16, 2025
- 0
-
AI智能交通|推進智能交通 不離數碼基建
國際汽車及航空工程師學會香港分會前任主席潘志健接受本報專訪時指出,AI可支援城市規劃、交通流量預測與模擬,例如模擬隧道封閉對人流與車流的影響,提前調動巴士等資源,讓政府更有前瞻地部署危機應變策略。
- Posted June 16, 2025
- 0
-
LexisNexis|AI法律助理攻港 助撰合約處理案例 全用本地內容訓練 附連結方便核實
律商聯訊(LexisNexis)是長年法律界主要資料與研究平台供應商,其新一代人工智能(AI)平台Lexis+ AI,內含專為法律工作流程設計的個人化助理Protégé,即將在下月正式登陸香港,成為亞洲首個上線地區。
- Posted June 16, 2025
- 0
-
小心漫遊數據「隱形兇手」(林國誠)
不少人即使已選購數據漫遊計劃,卻忽略了一個經常被低估的事項──手機作業系統在用戶不察覺的情況下,於背景自動使用大量數據,導致數據流量無聲無息地消耗掉,影響漫遊上網體驗。
- Posted June 13, 2025
- 0